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Nano-scale heterostructures are generally characterized by local strain variations.

Because the atoms in such systems can be irregularly positioned, theroretical models and

parameterizations that are restricted to hydrostatic and uniaxial strain are generally not

applicable.  To address this shortcoming, a method that enables the incorporation of

general distortions into the empirical tight binding model is presented. The method shifts

the diagonal Hamiltonian matrix elements due to displacements of neighboring atoms

from their ideal bulk positions.  The new, efficient, and flexible method is developed for

zincblende semiconductors and employed to calculate gaps for GaAs and InAs under

hydrostatic and uniaxial strain. Where experimental and theoretical data are available our

new method compares favorably with other methods, yet it is not restricted to the cases of

uniaxial or hydrstatic strain.  Because our method handles arbitrary nearest-neighbor

displacements it permits the incorporation of diagonal parameter shifts in general, three-

dimensional nano-scale electronic structure simulations, such as the nanoelectronic

modeling tool (NEMO 3D).

PACS index:  71.15.-m, 71.23.-k
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I. INTRODUCTION
Since the pioneering work of Slater and Koster1, empirical tight-binding models have

provided a convenient and accurate method for modeling semiconductors.  Later work by

Vogl, Hjalmarson, and Dow2 and Jancu. et al.3, has further improved tight-binding

models by demonstrating that important gaps and masses can be better fit by models

which include an exicted s-like orbital, s* (Ref. 2), and exicted-d orbitals (Ref. 3).  Tight-

binding models have enjoyed considerable success in semiconductor heterostructure

calculations in a wide variety of materials systems, some of which involve strain.  In such

systems highly accurate modeling requires modifying the Hamiltonian matrix elements to

take into account the displacements of the atoms from their positions in an unstrained

material.

In such strained systems the most obvious modification is to adjust the matrix

elements involving orbitals centered on different atoms to take into account the altered

environment in terms of both bond angle and length.  Bond length alterations are

generally included by scaling the Slater-Koster1 two-center integrals from which the

matrix elements are constructed by a factor d d0( )η
, where d0 (d) is the ideal (altered)

bond length.3-6  This modification is a generalized version of Harrison’s7 d–2 scaling law8.

Changes in the bond angle are automatically incorporated via the direction cosines in the

Slater-Koster1 tables of matrix elements in terms of the two-center integrals.

Since the atomic-like orbitals of tight-binding models are not true atomic orbitals

(more typically they are the orthogonalized Löwdin orbitals9), it is clear that in principle,

the diagonal matrix elements, too, might vary in response to displacements of

neighboring atoms.  In the case of uniaxial [001] strain, which lifts the degeneracy of the

diagonal pz- and dxy- energies versus their (px-, py-) and (dyz-, dzx-) counterparts, differing
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treatments of the diagonal matrix elements have been suggested. Priester, et al.4 achieve a

good fit for the spin-orbit sp3s* model without adjusting the diagonal p-matrix elements.

Others, however, model the effect of the strain by introducing a new fitting parameter

which alters the diagonal p- or d-matrix elements in proportion to the strain.3, 6  Tserbak,

et al.6, include a diagonal p-matrix element shift in their third-near neighbor sp3s* model,

while Jancu, et al.3, shift only the diagonal d-matrix elements in their sp3d5s* model. Thus

the degree to which such diagonal parameter adjustments are needed appears model

dependent.

In those models requiring diagonal parameter shifts, the effect can be dramatic, as

illustrated in Fig. 1.  Here we plot the conduction- and valence-band edges of GaAs under

uniaxial strain using the sp3d5s* model and parameters and scaling exponents of Ref. 3

both with and without their special diagonal d-only matrix element adjustment.  The

differences are striking, especially for the light-hole band edge, which is highly

inaccurate when the shifts are turned off.  Since diagonal parameter adjustments are

required for the sp3d5s* model in the case of uniaxial [001] strain, it expected that they

will be necessary for the more general case of irregular displacements of neighboring

atoms. Although the modification of Ref. 3 is readily implemented and is entirely

satisfactory for systems in which only uniaxial strain is present, it is not easily extended

to the more general case of strained quantum dots, where displacements are, from the

electronic structure perspective, arbitrary, and in which one cannot define a global strain

tensor.  A more general approach is therefore needed.

Here we present a method for adjusting the diagonal Hamiltonian matrix elements to

take into account more general differences in neighboring atoms.  Although our method
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is in no way restricted to regular distortions of the crystal, such as one encounters under

both hydrostatic and uniaxial [001] strain, we use these commonly modeled cases to test

the predictions of our approach. In Sec. II we discuss the model and in Sec. III the results,

comparing them to kp, and experimental results.  We present our conclusions in Sec. IV.

II. MODEL

The modifications to the diagonal- and neighboring-atom Hamiltonian matrix

elements due to displacements of the atoms in a non-ideal (e.g., strained) crystal take

different forms.  (In our model we do not alter the spin-orbit matrix elements.)  For

neighboring-atom matrix elements the changes in bond angle appear through the

direction cosines in the Slater-Koster1 tables.  We adjust the magnitudes of the two-center

integrals in the Slater-Koster1 tables using the customary generalization of Harrison’s7 d–2

scaling law:  U U d d= ( )0 0

η
, where U0 is an ideal-crystal two-center integral and d0 and d

are the ideal and actual bond lengths, respectively8.  Below we discuss adjusting the

diagonal Hamiltonian matrix elements.

The starting point for our treatment of diagonal parameter shifts is the Löwdin

orthogonalization procedure,9 which, for a true atomic orbital of type α on the i-th atom,

Φi,α , generates an orthonormal atomic-like orbital of the same type on the same atom,

ϕ αi, .  Because our aim is a treatment suitable for strained quantum dot systems, in

which diagonalizing the Hamiltonian is quite costly, it is essential to expend minimum

effort on Hamiltonian construction, and a reasonable tradeoff between accuracy and

speed is desirable. We therefore drop all overlaps and Hamiltonian matrix elements

beyond nearest-neighbor so that the Löwdin procedure9gives:
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ϕ α α β α β
β

i i j i j
j

S, , , , , ,
,

≈ − ( ) ( )∑Φ Φ1
2

(1)

S
j i j i i j, , , , , , ,β α β α α βδ δ( ) ( ) = −Φ Φ , (2)

where atomic orbitals on the same atom are assumed orthogonal.  The diagonal

parameters of an empirical tight-binding model are the Löwdin matrix elements

ε ϕ ϕα α αi i iH, , ,
ˆ= , which differ from their free atom counterparts, ε α α αi i i iH, , ,

ˆ0( ) = Φ Φ ,

due to the neighboring-atom contributions in eq. (1). We neglect all other effects such as

charge transfer.  Given our need for computational efficiency and the approximations we

must make for the generally larger (net) overlap effects below, this seems reasonable.

(Most tight-binding models in fact omit the effects of charge transfer on the diagonal

matrix elements, even for polar semiconductors; see sec. 2.3-E of Ref. 7 for an excellent

discussion).  Likewise, in the spirit of the bulk model, which ignores same-atom s-s*

matrix elements, we exclude any (small) Hamiltonian matrix elements between same-

atom orbitals of different symmetry that might arise due to an asymmetric deformation.

We now make three further simplifying restrictions:  (i) the atomic orbitals are real;

(ii) there are no common nearest-neighbors for a given nearest-neighbor pair; and (iii)

only two-center integrals are significant.  Restriction (iii) yields the particularly useful

approximation for matrix elements between atomic orbitals on different ( n n≠ ′ ) atoms,

v S V V
n n n n n n n n n n′ ′( ) ( )

( )
′ ′

( ) ( )
′ ′( ) ( ) ′ ′ ′≈ +[ ] + +, , , , , , , , , ,

ˆ ˆ
µ µ µ µ µ µ µ µε ε0 0 01

2
1
2

Φ Φ (3)

where Ĥj  is the free-atom Hamiltonian and V̂j  the potential for the j-th atom,

ˆ
, , ,Hj j j jΦ Φν ν νε= ( )0 , and Φ Φ′ ′

( )
′ ′( ) ( )≈n n n n n n

H S, , , , , ,
ˆ

µ µ µ µ µε 0 .  In determining the

corresponding Löwdin-orbital matrix element using eq. (1) and assumption (i) above,
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observe that under restriction (ii) the only surviving Hamiltonian matrix elements in the

sums are those for orbitals centered on the same atom.  Consistent with our retention of

only the two-center integrals we take Φ Φi i iH, , , ,
ˆ

α β α α βε δ≈ ( )0  and obtain:

v V V
n n n n n n′ ′( ) ( ) ′ ′ ′≈ +, , , , ,

ˆ ˆ
µ µ µ µ

1
2

Φ Φ (4)

To proceed any further we must make some approximation concerning the overlap

S
n n′ ′( ) ( ), , ,µ µ , or equivalently the relationship between v

n n′ ′( ) ( ), , ,µ µ  and v
n n′ ′( ) ( )

( )
, , ,µ µ

0 .  Harrison7

observes that in the extended Hückel theory10 S cVi j i j i j, ,= +( )2 ε ε  where c is a universal

constant; the results of Wills and Harrison11 show that this is not an unreasonable

approximation.  We therefore adopt a modified version of this approximation, taking:

S K
v

n n
n n n n

n n

n n
′ ′( ) ( ) ′ ′( ) ( )

′ ′( ) ( )

′ ′
( ) ( )=

+
≠ ′, , , , , ,

, , ,

, ,

,µ µ µ µ
µ µ

µ µε ε0 0 (5)

or, equivalently, substituting eq. (4) into eq. (3),

v
K

v
n n

n n

n n′ ′( ) ( )
( ) ′ ′( ) ( )

′ ′( ) ( )≈
+

, , ,

, , ,

, , ,µ µ
µ µ

µ µ
0

2

2
(6)

where the constants K
n n′ ′( ) ( ), , ,µ µ  depend upon the orbitals involved in the matrix element,

in order to provide greater flexibility in fitting the properties of strained materials.  The

constants K are of course symmetric, K K
n n n n′ ′( ) ( ) ( ) ′ ′( )=, , , , , ,µ µ µ µ , and the subscripts n n and ′

on K
n n′ ′( ) ( ), , ,µ µ  imply only a dependence on atomic species, not on position.  The orbital

types µ µ, ′  in eqs. (5) and (6) are the customary atomic-like orbitals (sa, sc, pxa, dxyc,

etc.), with the matrix elements v
n n′ ′( ) ( ), , ,µ µ  calculated from the Slater-Koster tables.1  In an

attempt to limit the number of additional parameters we restrict the K to depend only

upon species and total angular momentum ( K Ksa pc d d, ,, , etc.), ignoring any dependence on
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bond type ( dd ppπ σ, , etc.).  The atomic energies ε νj ,
0( ) are vacuum-referenced and hence

the overlaps will have the proper sign for K > 0.

Using eqs. (5) and (6) in (3) we find that the diagonal Hamiltonian matrix elements

are related to their free-atom counterparts via

ε ε
ε εα α β α

β α

β αβ
i i j i

j i

j ij
j NN i

C
v

, , , , ,

, , ,

, ,,

≈ −
+

( )
( ) ( )

( ) ( )
( ) ( )

∈ −

∑0

2

0 0 (7)

C K K
j i j i j i, , , , , , , , ,β α β α β α( ) ( ) ( ) ( ) ( ) ( )= +[ ]1

2
2 2 (8)

Eq. (7) leads directly to our real objective, a relationship between the diagonal tight-

binding matrix elements in the ideal (unprimed) and altered (primed) nominally-

zincblende systems:

′ = +
− ′
+( ) ( )

( ) ( ) ( ) ( )

∈ −

∑ε ε
ε εα α β α

β α β α

β αβ
i i j i

j i j i

j ij
j NN i

C
v v

, , , , ,

, , , , , ,

, ,,

2 2

(9)

where in eq. (9) we have replaced the atomic energies ε µn,
0( )  by their ideal, vacuum-

referenced Löwdin orbital counterparts (i.e., we apply an identical downward shift to all

diagonal bulk tight-binding parameters so that they are negative).  Note that the resulting

difference in ′ε αi,  will be roughly of magnitude vi j i j, ε ε+( )[ ] 2
.

In spite of the simplifications made in order to obtain a computationally efficient

formula, we see that eq. (9) has the highly desirable property that it automatically

incorporates changes in geometry due to displacements of the atoms since the v
j i, , ,β α( ) ( )

and ′( ) ( )v
j i, , ,β α  involve direction cosines for the ideal and altered crystals, respectively.

Hence arbitrary displacements of neighboring atoms are implicitly included in the

diagonal parameter shift and there is no need to separately model cases of hydrostatic or
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uniaxial strain, for example.  Note as well that the diagonal parameter shifts are no longer

linear in the strain, since the v
j i, , ,β α( ) ( )  and ′( ) ( )v

j i, , ,β α  are not necessarily linear and they

furthermore appear squared.

III.RESULTS

In Table I we list the two-center integrals in our parameterization for GaAs and InAs

in the Slater-Koster1 notation for the sp3d5s* model.3  As a convenience we choose the

same diagonal parameter for all d-orbitals of a given species in bulk, although in

principle we could have chosen different energies for d d dxy yz zx, ,( )  and d d
z r x y3 2 2 2 2− −( ),

due to the crystal-field splitting.  The lowest twenty (20) bulk bands of GaAs and InAs

are shown in Figures 2 and 3, respectively.  In Table II we list the energies and effective

masses reproduced by the parameters of Table I.  These parameters are determined using

our genetic algorithm12 and it is evident that they provide a good fit to technologically

important energies and masses of both bulk materials.  Note that our parameterizations

are chosen to reproduce the room-temperature gaps and that the valence-band maximum

of GaAs is chosen as the reference energy.  The InAs valence-band maximum is offset

relative to that of GaAs since the parameters are ultimately employed in modeling

InAs/GaAs heterostructures such as quantum dots13.

In Table III we list the parameters for strained systems, which were fit to reproduce

the conduction-band, and light-, heavy-, and split-off-hole valence-band edges at Γ under

hydrostatic pressure and uniaxial strain.  Because the split-off hole is not of great interest

to us in quantum dot modeling, we assigned it only small weights in the fitting procedure.

As mentioned above the two-center integrals are scaled with the generalized version of
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Harrison’s7 d–2 scaling law, U U d d= ( )0 0

η
, where U0 is a bulk two-center integral, U its

counterpart in the strained material, η the exponent, and d0 and d are the ideal (bulk) and

actual (strained) bond length, respectively.  The constants, C , are listed as well; the

overlap constants K  are given by the positive root of eq. (8).  Since the cases of

hydrostatic pressure and uniaxial strain have been treated theoretically,14 and for GaAs

under hydrostatic pressure, experimentally15, we next discuss the behavior of our model

under these conditions.

We first consider the positions of the valence and conduction-band edges at Γ under

hydrostatic deformation, ε ε ε εxx yy zz= = = . Negative ε  corresponds to a conventional

hydrostatic pressure experiment, positive ε  to a uniform dialation, which is of interest for

quantum dots in which such atomic displacements can occur. We plot these for GaAs and

InAs as calculated with our model and kp theory14 in fig. 4; the results for InAs are

similar.  The parameters appearing in the kp formulas are taken from Van de Walle.14

For both GaAs and InAs (not shown) the trends are similar in both approaches.  In fig. 5

we plot the direct and indirect gaps of GaAs under hydrostatic pressure as calculated with

our model versus the measurements of Goñi, et al.15  In our model both gaps are

somewhat less pressure-sensitive than the measured values, and in our parameterization

the direct-indirect crossover occurs at ε ≈ 0 02. whereas the experimental value is about

0.016.  The agreement with the indirect gap result is especially encouraging with regards

to the physical content of the model, since the model was not explicitly parameterized to

fit indirect-gap data.  In view of the significant experimental uncertainties and the

generality of our approach, which is not limited to only hydrostatic pressure or uniaxial

strain, the agreement is good.  Finally we mention that although at zero pressure all d-
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orbitals of the same species have the same energy, under hydrostatic pressure the crystal-

field splitting appears in our model.  It is largest for GaAs, about 0.165 eV at ε = 0 05. ,

but even so is still less than 2% of the zero-pressure d-energy.

We next study the case of uniaxial [001] strain.  Here to facilitate comparison with

the kp results we calculate εzz  as a function of ε ε εxx yy= = ||  using Van de Walle’s14

values for D001.  In fig. 6, we plot the shifts for GaAs of Ez and Exy relative to their zero-

strain values as functions of ε|| .  Note that the vast majority of the change is reflected in

the p-orbitals (Ez) – the d-orbitals (Exy) are relatively unaffected.  In fig. 7 we plot the

band edges of GaAs versus ε||  for both our model and the kp model, with parameters

from Van de Walle.14  Both models display the same trends, with the exception of the

split-off hole band.  (Note, however, that GaAs, has a relatively small lattice constant and

will generally be stretched, not compressed, in InGaAs/GaAs quantum dot simulations13.)

Finally we mention that the nonlinear strain behavior of the tight-binding conduction-

band edge (fig. 7) appears to be at least partly related to the total s*-contribution to the

zero-strain state.  In a tight-binding model with s-s* coupling, each of the two degenerate

zero-strain conduction-band states at Γ  belongs to a four-dimensional subspace

sa sc s a s c, , * , *{ } , and those states with larger total s*-contribution tend to be more

nonlinear in the strain.

IV. CONCLUSIONS

Because the sp3d5s* model requires diagonal parameter shifts to correctly model

uniaxial [001] strain, we have developed a general treatment which adjusts diagonal

tight-binding parameters for zincblende crystals due to arbitrary nearest-neighbor
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displacements. Our method is in no way restricted to regular distortions. We have shown

that this method correctly reproduces the altered geometry of the rearranged atoms.  In

order to test the method we have compared its results for hydrostatic pressure and

uniaxial [001] strain to those of kp and other tight-binding approaches.  We find that this

method provides good agreement with other calculations and, unlike special diagonal

shift formulas for uniaxial strain only, treats arbitrary cases naturally and automatically.

Our method is efficient to implement for nearest-neighbor models, making it well-suited

to use for modeling quantum heterostructures where a minimum of effort can be

expended on Hamiltonian construction in multimillion atom quantum dot simulations13.
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TABLES

Table I: Lattice constants, diagonal and spin-orbit parameters, and two-center

integrals for our parameterizations of GaAs and InAs in the sp3d5s* model.  Eshift is the

downward atomic shift applied to the diagonal parameters prior to determining alterations

due to displacements of nearest-neighbors.  The same upward shift is then applied to the

altered diagonal parameters.  Lattice constants are in Å; all other values are in eV.

Parameter GaAs InAs   

a 5.6532 6.0583

Esa -5.500420 -5.500420

Epa 4.151070 4.151070

Esc -0.241190 -0.581930

Epc 6.707760 6.971630

Es a* 19.710590 19.710590

Es c* 22.663520 19.941380

Eda 13.031690 13.031690

Edc 12.748460 13.307090

Eshift 27.000000 27.000000

ssσ -1.645080 -1.694350

s s* *σ -3.704550 -4.210450

s sa c* σ -2.207770 -2.426740
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s sa c *σ -1.314910 -1.159870

s pa cσ 2.664930 2.598230

s pc aσ 2.960320 2.809360

s pa c* σ 1.976500 2.067660

s pc a* σ 1.027550 0.937340

s da cσ -2.609400 -2.268370

s dc aσ -2.320590 -2.293090

s da c* σ -0.628200 -0.899370

s dc a* σ -0.133240 -0.488990

ppσ 4.150800 4.310640

ppπ -1.427440 -1.288950

p da cσ -1.874280 -1.731410

p dc aσ -1.889640 -1.978420

p da cπ 2.529260 2.188860

p dc aπ 2.549130 2.456020

ddσ -1.269960 -1.584610

ddπ 2.505360 2.717930

ddδ -0.851740 -0.505090



17

λa 0.172340 0.172340

λc 0.021790 0.131200
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Table II: Selected energies (in eV), k-minima (in units of π a ) and effective masses

(in units of the free-electron mass) for GaAs and InAs as reproduced by the parameters of

Table I, along with target values given our fitting algorithm (Ref. 12); see Ref. 16.  In

both materials the L-valley minimum occurs at the symmetry point.  All masses are

computed at the respective extrema.

Quantity GaAs GaAs-Target InAs InAs-Target   

Ec
Γ 1.41280 1.42400 0.59421 0.59570

Ev
Γ -0.00306 0.00000 0.22430 0.22570

∆0 0.32647 0.34000 0.39316 0.38000

Ec
L
, min 1.69811 1.70800 1.75315 1.75570

Ec
X
, min 1.89846 1.90000 2.50732 2.50570

kmin
001[ ] 1.81358 1.80000 2.00000 1.80000

Electrons

mΓ 0.06574 0.06700 0.02353 0.02390

mX l, 1.88076 1.30000 1.12583 1.30000

mX t, 0.17525 0.23000 0.17514 0.23000

mL l, 1.72750 1.90000 1.53946 1.90000

mL t, 0.09671 0.07540 0.09414 0.07540

Holes
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mlh
100[ ] 0.08249 0.08710 0.02811 0.02730

mlh
110[ ] 0.07546 0.08040 0.02729 0.02640

mlh
111[ ] 0.07362 0.07860 0.02703 0.02610

mhh
100[ ] 0.37686 0.40300 0.35158 0.34480

mhh
110[ ] 0.65660 0.66000 0.56349 0.63910

mhh
111[ ] 0.83905 0.81300 0.69813 0.87640

mso 0.16243 0.15000 0.09959 0.15000
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Table III: Dimensionless scaling exponents, η , and diagonal parameter shift constants,

C, defined in Eq. (8) for GaAs and InAs.

Parameter GaAs InAs   

η σs s, 2.060010 1.924940

η σs s, * 0.000000 0.060800

η σs s*, * 0.212660 0.000810

η σs p, 1.384980 1.570030

η σs p*, 1.399300 1.949370

η σs d, 1.898890 1.765660

η σs d*, 1.785400 2.023870

η σp p, 2.684970 2.061510

η πp p, 1.314050 1.602470

η σp d, 1.812350 2.383820

η πp d, 2.379640 2.455600

η σd d, 1.724430 2.322910

η πd d, 1.972530 1.615890

η δd d, 1.896720 2.329600

Cs s, 0.586960 1.258286

Cs s*, * 0.486090 2.481447

Csa s c, * 0.770950 4.557774
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Cs a sc* , 0.889210 1.086223

Csa pc, 0.759790 4.367575

Csc pa, 1.458910 7.029660

Cs a pc* , 0.810790 3.298598

Cs c pa* , 1.212020 7.029496

Csa dc, 1.070150 0.000000

Csc da, 0.580530 0.187036

Cs a dc* , 1.032560 1.195042

Cs c da* , 1.323850 1.769483

Cp p, 2.000000 4.624438

Cpa dc, 1.613500 0.000000

Cpc da, 1.500000 0.000000

Cd d, 1.262620 0.246999
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FIGURE CAPTIONS

Figure 1: Conduction- and valence-band edges of GaAs in the parameterization of

Ref. 3 as calculated with and without their special diagonal d-matrix element shift.

Figure 2: The lowest 20 bands of GaAs as reproduced by the parameters of Table I.

Figure 3: The lowest 20 bands of InAs as reproduced by the parameters of Table I.

Figure 4: GaAs band edges under hydrostatic deformation as calculated with our

model and the kp model of Van de Walle (Ref. 14, adjusted to reflect room-temperature

gaps). Negative ε  corresponds to conventional hydrostatic pressure experiments, positive

ε  to a uniform dialation.

Figure 5: Direct and indirect band gaps of GaAs band edges under hydrostatic

pressure as calculated with our model and as measured (Ref. 15).

Figure 6: Diagonal p- ∆E pzµ( )[ ]  and d- ∆E dxyµ( )[ ]  parameter shifts relative to their

respective zero-strain values E Ep dµ µ,( )  for GaAs under uniaxial strain as calculated with

our model.

Figure 7: GaAs band edges under uniaxial strain as calculated with our model and the

kp model of ref. 14, adjusted to reflect room-temperature gaps.
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